skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nomura, Kenji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract 2D metal oxides (2DMOs) have recently emerged as a high‐performance class of ultrathin, wide bandgap materials offering exceptional electrical and optical properties for a wide area of device applications in energy, sensing, and display technologies. Liquid metal printing represents a thermodynamically advantageous strategy for synthesizing 2DMOs by a solvent‐free and vacuum‐free scalable method. Here, recent progress in the field of liquid metal printed 2D oxides is reviewed, considering how the physics of Cabrera‐Mott oxidation gives this rapid, low‐temperature process advantages over alternatives such as sol‐gel and nanoparticle processing. The growth, composition, and crystallinity of a burgeoning set of 1–3 nm thick liquid metal printed semiconducting, conducting, and dielectric oxides are analyzed that are uniquely suited for the fabrication of high‐performance flexible electronics. The advantages and limitations of these strategies are considered, highlighting opportunities to amplify the impact of 2DMO through large‐area printing, the design of doped metal alloys, stacking of 2DMO to electrostatically engineer new oxide heterostructures, and implementation of 2D oxide devices for gas sensing, photodetection, and neuromorphic computing. 
    more » « less